

Sesame Application Programming
Interface (Sesame API) Guide

A comprehensive guide to Sesame’s
application programming interface

LANTICA SOFTWARE

Copyright Notice
Copyright  2010 Lantica Software, LLC. All Rights Reserved.

Documentation version 1.0

Acknowledgements

SesameAPI uses parts of the iMatix SFL package, Copyright © 1991-2000 iMatix

Corporation

http://www.imatix.com.

Trademarks

Lantica, Lantica Software, and Lantica Software, LLC are registered names of Lantica

Software, LLC. Sesame Database Manager is a trademark of Lantica Software, LLC.

LANTICA SOFTWARE LICENSE AND WARRANTY

IMPORTANT: PLEASE READ THE TERMS AND

CONDITIONS OF THIS LICENSE AGREEMENT

CAREFULLY BEFORE USING THE SOFTWARE.

LANTICA SOFTWARE, LLC AND/OR ITS

SUBSIDIARIES (“LANTICA”) IS WILLING

TO LICENSE THE SOFTWARE TO THE

INDIVIDUAL, COMPANY OR OTHER LEGAL

ENTITY THAT WILL BE USING THE SOFTWARE

(REFERENCED BELOW AS “YOU” OR “YOUR”)

ONLY ON THE CONDITION THAT YOU ACCEPT

ALL OF THE TERMS OF THIS LICENSE

AGREEMENT. THIS IS A LEGAL AND

ENFORCEABLE CONTRACT BETWEEN YOU AND

LANTICA. BY OPENING THIS PACKAGE,

BREAKING THE SEAL, OR LOADING THE

SOFTWARE, YOU AGREE TO THE TERMS AND

CONDITIONS OF THIS AGREEMENT. IF YOU DO

NOT AGREE TO THESE TERMS AND

CONDITIONS, MAKE NO FURTHER USE OF THE

SOFTWARE AND REMOVE ANY INSTALLATION

FROM YOUR SYSTEM.

1. License

The software which accompanies this license

(collectively, the “Software”) is the property of Lantica

and/or its licensors and is protected by U.S. and

international copyright law. While Lantica continues to

own the Software, you will have certain rights to use

the Software after you accept this license. This license

governs any releases, revisions, or enhancements to the

Software that Lantica may furnish to you. You may be

held legally responsible for any copyright infringement

which is caused or encouraged by your failure to abide

by the terms of this license. Except as may be modified

by a Lantica license certificate, license coupon, license

key (each a “License Module”) which accompanies,

precedes, or follows this license, your rights and

obligations with respect to the use of the Software are

as follows:

You may not:

A. Copy the printed documentation that accompanies

the Software;

B. Sublicense, sell, lease, or rent any portion of the

Software except as included as part of a derived work;

C. Reverse engineer, decompile, disassemble, modify,

adapt, translate, make any attempt to discover the

source code of the Software; or

D. Use the Software in any manner not authorized by

this license.

2. Limited Warranty:

Lantica does not warrant that the Software will meet

your requirements or that the operation of the Software

will be uninterrupted or that the Software will be error-

free.

THE ABOVE WARRANTY IS EXCLUSIVE AND IN

LIEU OF ALL OTHER WARRANTIES, WHETHER

EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO THE IMPLIED WARRANTIES OF

MERCHANTABILITY, FITNESS FOR A

PARTICULAR PURPOSE AND NON-

INFRINGEMENT OF INTELLECTUAL PROPERTY

RIGHTS. THIS WARRANTY GIVES YOU SPECIFIC

LEGAL RIGHTS. YOU MAY HAVE OTHER

RIGHTS WHICH VARY FROM STATE TO STATE

AND COUNTRY TO COUNTRY.

3. Disclaimer of Damages:

SOME STATES AND COUNTRIES DO NOT

ALLOW THE LIMITATION OR EXCLUSION OF

LIABILITY FOR INCIDENTAL OR

CONSEQUENTIAL DAMAGES SO THE

BELOW LIMITATION OR EXCLUSION MAY NOT

APPLY TO YOU.

TO THE MAXIMUM EXTENT PERMITTED BY

APPLICABLE LAW AND REGARDLESS OF

WHETHER ANY REMEDY SET FORTH HEREIN

FAILS OF ITS ESSENTIAL PURPOSE, IN NO

EVENT WILL LANTICA OR ITS LICENSORS BE

LIABLE TO YOU FOR ANY SPECIAL,

CONSEQUENTIAL, INDIRECT, PUNITIVE,

INCIDENTAL OR SIMILAR DAMAGES,

INCLUDING BUT NOT LIMITED TO ANY LOST

PROFITS OR LOST DATA ARISING OUT OF THE

USE OR INABILITY TO USE THE SOFTWARE,

EVEN IF LANTICA HAS BEEN ADVISED OF THE

POSSIBILITY OF SUCH DAMAGES. IN NO EVENT

SHALL LANTICA’S OR ITS LICENSORS'

LIABILITY EXCEED THE PRICE THAT YOU PAID

FOR THE SOFTWARE. The disclaimers and

limitations set forth above will apply regardless of

whether you accept this license or not.

4. General:

 3

This license will be governed by the laws of the

Commonwealth of Pennsylvania, United States of

America, notwithstanding any conflicts rules to the

contrary. This license agreement and any related

License Module is the entire agreement between you

and Lantica relating to the Software and supercedes all

prior or contemporaneous oral or written

communications, proposals and representations with

respect to its subject matter, and shall prevail over any

conflicting or additional terms of any quote, order,

acknowledgement, or similar communications between

the parties.

This agreement may only be modified by a License

Module or by a written document which has been

signed by both you and Lantica. This license will

automatically terminate without notice from Lantica if

you fail to comply with any of the terms contained

herein. You may terminate this license at any time by

giving written notice of termination to Lantica. Upon

any termination of this license, you must cease all use

of and destroy all copies of the Software. The

disclaimers of warranties and damages and limitation

on liability shall survive any termination of this license.

Should you have any questions concerning this license,

or if you desire to contact Lantica for any reason, please

write to: Lantica Customer Service, P.O. Box 27, Penns

Park, PA 18943-0027, USA

4

Table of Contents

Sesame Application Programming Interface Guide 5

About the Sesame Application Programming Interface (Sesame API) 5
Installing the Sesame API.. 5
Starting a Sesame Server.. 5

Sesame API Commands Quick Reference 7

Alphabetic Command Reference....................................... 8

Special Command Reference .. 17

Specific Language Notes and Sample Files 19
Language Version Issues... 19
Visual Basic/Visual Basic for Applications... 19
C/C++.. 19
PHP .. 20
Perl .. 20
Python .. 20
Java ... 20
C# ... 21

Reader's Notes ... 22

Sesame Application Programming Interface Guide

5

Sesame Application Programming Interface Guide

About the Sesame Application Programming Interface (Sesame API)

The Sesame Application Programming Interface (Sesame API) is a set of functions and

subroutines used to access an application created with Sesame Database Manager and

running on an active Sesame Server.

The procedures provided by the Sesame API duplicate a selection of the functions

provided by SBasic - the programming language built into Sesame Database Manager

- including the XResultSet family of commands and the @Error command.

For complete information about Sesame Database Manager, see the Sesame User

Guide supplied with Sesame Database Manager. For complete information about the

SBasic commands exposed by this API, see the Sesame Programming Guide supplied

with Sesame Database Manager.
Note: All libraries supplied with Sesame API are 32 bit.

The Sesame API is provided at no charge as an additional tool for use with Sesame

Database Manager. Due to the wide variation in system configurations and language

versions, we cannot provide free technical support for installation or use of the

Sesame API. If you need assistance with the Sesame API, please contact Lantica

Software Technical Support to schedule a paid Focused Support session or paid

consulting assistance from the API Development Team.

Installing the Sesame API

The Sesame API package is provided as a self-extracting exe file for Microsoft

Windows and as a gzipped tar file for Linux. These can be extracted wherever you wish

and the various examples and libraries copied into place as needed. To match the

paths used in the example files - which use the default install location for Sesame -

extract to the following locations:

Windows: C:\Sesame2\Utilities\Lantica

Linux: /usr/local/Sesame2/Utilities/Lantica

A SesameAPI folder will be created in the extract location with a docs subfolder

containing documentation, a sample_data folder with Sesame sample applications, and

a subfolder for each supported language. C/C++ and Visual Basic users should use the

libraries in the subfolder called shared. Each language subfolder contains the following

for that language:

example files
include files and declarations
.dll, .lib and .so files
version.txt file with information about library and language versions

Starting a Sesame Server

Important: The Sesame Server must be version 2.5 or higher. Earlier versions of
Sesame cannot accept a Sesame API connection.

The Sesame API is a type of Sesame Client. Just like a standard Sesame Client, it

must connect to a running Sesame Server to function and any Sesame database

applications you want to use must be accessible to that Sesame Server. You must also

have enough client licenses to allow the Sesame API Client to connect.

You can connect to a Sesame Server you start manually, or you can make use of

system or shell commands to start a Sesame Server as part of your implementation,

Sesame Application Programming Interface Guide

6

as appropriate. For complete instructions on starting a Sesame Server, see the

Sesame User Guide supplied with Sesame Database Manager.

Sesame API Commands Quick Reference

7

Sesame API Commands Quick Reference

Following is a Quick Reference that lists all the built-in commands available for use in

Sesame API programming.

SesameClose(rs) Closes a result set.

SesameConnect(server) Connect to a Sesame Server

SesameCreateNewRecord(rs) Creates a new record in a result set.

SesameDeleteRecord(rs) Deletes a record in a result set.

SesameDisconnect() Disconnect from the currently connected Sesame
Server.

SesameError() Returns information about the most recent run
time error.

SesameGetCurrentPosition(rs) Returns the current record position for a result
set.

SesameGetValue(rs, fn) Returns a field value from a record in a result
set.

SesameLocked(rs) Checks whether the current record in the
specified result set is locked.

SesameParent(rs) Returns a handle to a result set containing a
single record which is the natural parent of the
current record in result set rs.

SesameRemoveRecord(rs) Removes a record from a result set. This does
not delete the record from the database.

SesameReparent(rs_parent, field_name,
rs_child)

Sets the records in a result set to be children of
the current record in another result set.

SesameRunProgram(rs, global_program,
program, test_only)

Runs a SBasic program on every record in a
result set. Similar to running a Mass Update.

SesameSearch(filename, db,
search_mode, search_syntax, criteria,
username, password)

Creates a result set based on retrieve criteria.
The value returned is used as the result set
handle required by the Sesame API commands.

SesameSetCurrentPosition(rs, pos) Sets the current record position for a result set.
Can be used in a loop to iterate through the
records in the result set.

SesameSetValue(rs, fn, val) Sets the value of a field in a record in a result
set.

SesameSort(rs, sort_vals) Sorts a result set.

SesameSubSet(rs, fn) Returns a handle to a result set containing the
natural subrecords of the current record in result
set rs.

SesameTotal(rs) Returns the number of records in a result set.

Special Commands

SesameAltGetValue(rs, fn, limit, output) Alternate version of SesameGetValue() for use
with Visual Basic.

SesameAltRunProgram(rs,
global_program, program, test_only, limit,
output)

Alternate version of SesameRunProgram() for
use with Visual Basic.

Alphabetic Command Reference

8

Alphabetic Command Reference

This section provides detailed reference information and usage examples of these

built-in commands. Each command lists its syntax, parameters, return value type,

and corresponding SBasic function. Most commands also include a detailed description

of what the command does. Further information about a command may be available in

the documentation for the corresponding SBasic function in the Sesame Programming

Guide supplied with Sesame Database Manager.

Note: The Sesame API is available in a number of languages. Code examples shown are
illustrative and may not match the specific syntax of your preferred language.

SesameClose(rs)
Parameters: rs as 32 bit integer

Returns: Nothing

SBasic Function: XResultSetClose()

SesameClose closes a result set, signaling to Sesame that you are done using that

result set. If you open a result set by any means, you must call SesameClose on that

result set.

This command takes as its only argument the "handle" to the result set.

rs == SesameSearch("Customers.db", "Customers", 0, 2, "", "", "", "");
if(rs > -1)
{
 // Do stuff
 SesameClose(rs);
}

SesameConnect(server)
Parameters: server as string

Returns: 32 bit integer

SBasic Function: None. Corresponds to opening a standard Sesame client.

SesameConnect opens a connection to a running Sesame server. The server

argument is the name (and, optionally, port numbers) of the Sesame Server to which

to connect. A return value greater than zero (0) indicates a successful connection.

For more information on Sesame connection syntax, see the Network Administration

section of the Sesame User Guide supplied with Sesame Database Manager.

flag == SesameConnect(my_server);

flag == SesameConnect(myserver:20000:20001);

Note: If SesameConnect() is successful, you must call SesameDisconnect() when you
are finished to release the connection and free up the client license.

SesameCreateNewRecord(rs)

Parameters: rs as 32 bit integer

Returns: Nothing

SBasic Function: XResultSetCreateNewRecord()

SesameCreateNewRecord creates a new record in the result set and sets the current

record to the newly created one. After it is created, fields can be filled out using

SesameSetValue. The values you set in the new record do not have to match the

search spec that created the result set.

Alphabetic Command Reference

9

This command takes as its only argument the "handle" to the result set.

rs == SesameSearch("Customers.db", "Customers", 0, 2, "", "", "",
"!Key=<0");
if(rs > -1)
{
 SesameCreateNewRecord(rs);
 SesameSetValue(rs, "Key", "1000");
 SesameSetValue(rs, "City", "Albany");
 SesameClose(rs);
}

SesameDeleteRecord(rs)
Parameters: rs as 32 bit integer

Returns: Nothing

SBasic Function: XResultSetDeleteRecord()

SesameDeleteRecord permanently deletes the record from the database.

This command takes as its only argument the "handle" to the result set.

Be careful using this command inside a loop using SesameSetCurrentPosition and

SesameTotal. Both values will be changed because a record has been deleted from the

result set. When a record is deleted, the current record will become the one following

the deleted record, if there is one. If there are no records following the deleted record,

the current record will fall back to the previous record.

// Deletes all records where State = "MA"
rs == SesameSearch("Customers.db", "Customers", 0, 2, "", "", "",
"State=MA");
if(rs > -1)
{
 while(SesameTotal(rs) > 0)
 {
 SesameDeleteRecord(rs);
 }
 SesameClose(rs);
}

SesameDisconnect()
Parameters: None

Returns: Nothing

SBasic Function: None. Corresponds to closing a standard Sesame client.

Closes the currently active connection created with SesameConnect(). This releases

the connection and frees up the client license used by the connection.

flag == SesameConnect(my_server);
if(flag > 0)
{
 // Do stuff
 SesameDisconnect();
}

SesameError()
Parameters: None

Returns: 32 bit integer

SBasic Function: @ErrorType

Returns a code describing the latest run time error. A return value other than zero (0)

indicates that an error has occurred. Errors are defined as follows:

NO_ERROR 0
NO_FORM_FOUND 1

Alphabetic Command Reference

10

NULL_WIDGET 2
OUT_OF_RANGE_WIDGET_INDEX 3
OUT_OF_RANGE_FIELD_NUMBER 4
NO_PERMISSION 5
NULL_FORM 6
NULL_REPORT 7
NULL_LAYOUT 8
NULL_VALUE 9
FORM_REQUIRED 10
INAPPROPRIATE_LE 11
ILLEGAL_COLOR 12
NO_REPLY 13
COMMAND_FAILURE 14
PREVIEW_MODE 15
MEMORY_ALLOCATION_ERROR 16
NULL_SELECTION 17
CANNOT_OPEN_FILE 18
CANNOT_ACCESS_FILE 19
NULL_APPLICATION_FILENAME 20
ILLEGAL_VALUE 21
NULL_OPTION 22
FIELD_EDITOR_UP 23
MACRO_STACK_OVERFLOW 24
NULL_MACRO_STACK 25
NULL_MACRO_FILENAME 26
MASS_UPDATE 27
MACRO_STACK_UNDERFLOW 28
NULL_COMMAND_TREE 29
NULL_LABEL 30
LAYOUT_REQUIRED 31
NO_FORM_WIDGET 32
NO_WIDGET_COUNT 33
REQUIRED_UI_ELEMENT 34
RECORD_CREATION_FAILURE 35
RECORD_OUT_OF_RANGE 36
GENERAL 37
IMAGE_FILE_ERROR 38
PRINTER_DC 39
UNSUPPORTED 40
REPORT_REQUIRED 41
PARAMETER_ERROR 42
NULL_RESULT_SET_KEY 43
ILLEGAL_RESULT_SET_KEY 44
REENTRANT 45
OUT_OF_RANGE 46
UNEXPECTED_NULL 47
ILLEGAL_DB_ID 48
FILE_EXISTS 49
ELEMENT_NOT_FOUND 50
DIRECTORY_DOES_NOT_EXIST 51
FAILED_TO_CREATE_DIRECTORY 52
INCORRECT_FORM_MODE 53
REGEX_SYNTAX_ERROR 54
RUNTIME_COMPILATION_ERROR 55
RUNTIME_EXECUTION_ERROR 56
FTP_PROTOCOL_ERROR 57

rs == SesameSearch("Customers.db", "Customers", 0, 2, "", "", "",
"!Key=<0");
if(rs > -1)
{
 SesameCreateNewRecord(rs);
 if(SesameError() == 0)
 {
 SesameSetValue(rs, "Key", "1000");
 SesameSetValue(rs, "City", "Albany");
 }
 else
 {
 // Show error message "Failed to create new record."
 }
 SesameClose(rs);
}

Alphabetic Command Reference

11

SesameGetCurrentPosition(rs)
Parameters: rs as 32 bit integer

Returns: 32 bit integer

SBasic Function: @XResultSetCurrentPosition()

SesameGetCurrentPosition returns the result set position of the "current" record as set

by the command SesameSetCurrentPosition. Records are numbered from 1 to the total

number of records in the result set, which can be determined using SesameTotal.

SesameGetCurrentPosition takes as its only argument the "handle" to the result set.

pos == SesameGetCurrentPosition(rs);

SesameGetValue(rs, fn)
Parameters: rs as 32 bit integer, fn as string

Returns: string

SBasic Function: @XResultSetValue()

This function returns the field value of the specified field as a string. It obtains this

field from the current record.

This command takes as its first argument the "handle" to the result set. The second

argument is the field name of the field to return.

Note to Visual Basic users: This function will not work in Visual Basic as Visual Basic
cannot receive strings as return values from certain types of DLLs. Use
SesameAltGetValue() instead.

val == SesameGetValue(rs, "My_Field");

SesameLocked(rs)

Parameters: rs as 32 bit integer

Returns: 32 bit integer

SBasic Function: @XResultSetLocked()

This command checks whether the current record in the specified result set is locked

by another Sesame Client. It returns 0 if the record is not locked. It returns 1 if the

record is locked. You should check this value before attempting to perform any write

operations on the record. If the record is locked, write operations will fail.

This command takes as its only argument the "handle" to the result set.

if(SesameLocked(rs) == 0)
{
 SesameSetValue(rs, "City", "Albany");
}

SesameParent(rs)
Parameters: rs as 32 bit integer

Returns: 32 bit integer

This function is used to obtain a result set containing a single record - the natural

parent of the current record in the result set passed in as the only parameter. This

allows you to access the natural parent of a child record directly, even if there is no

matching key value. After any operations have been completed on that single record,

the parent result set should be closed. A return value greater than -1 indicates

success.

rs = SesameSearch("Countries.db", "Cities", 0, 2, "", "", "",
"!City=Aberdeen");
if(rs > -1)

Alphabetic Command Reference

12

{
 parent_rs == SesameParent(rs);
 if(parent_rs > -1)
 {
 // Do stuff with the Parent record (Country: United Kingdom)
 SesameClose(parent_rs);
 }
 SesameClose(rs);
}

SesameRemoveRecord(rs)
Parameters: rs as 32 bit integer

Returns: Nothing

SBasic Function: XResultSetRemoveRecord()

Removes the current record from the result set, but does not delete the record from

the database.

This command takes as its only argument the "handle" to the result set.

Be careful using this command inside a loop using SesameSetCurrentPosition and

SesameTotal. Both values will be changed because a record has been removed from

the result set. When a record is removed, the current record will become the one

following the removed record, if there is one. If there are no records following the

removed record, the current record will fall back to the previous record.

if(SesameGetValue(rs, "State") == "MA")
{
 SesameRemoveRecord(rs);
}

SesameReparent(rs_parent, field_name, rs_child)
Parameters: rs_parent as 32 bit integer, field_name as string, rs_child as 32 bit

integer

Returns: Nothing

SBasic Function: XResultSetReparent()

SesameReparent takes the entire child result set specified by rs_child, and makes the

records in that result set children of the current record in the specified parent result

set. They become children linked by the specified subrecord field.

Note: This is only necessary for naturally linked children. To reparent relational
children, simply change their matching field value.

This command takes three arguments. The first argument is the "handle" for a result

set containing the parent record. The second argument is the field name of the

subrecord field in the parent record that links to the correct child records. The third

argument is a "handle" to a result set containing the child records you want to

reparent.

The field name argument is the field name of the subrecord link. It is critical that you

use the correct field name. This is not the element name. You can find the correct

name by opening the parent form in SDesigner, right-clicking on the Subform element

and choosing Subform Settings. The field name appears under Step 4 labeled

Subrecord Field Name.

Because this command will reparent all of the records in the child result set, it is very

important that the SesameSearch that "opens" the child result set be very precise and

only include the records that you seek to reparent. You can also examine the data

values in the retrieved records, and use the SesameRemoveRecord command to limit

the result set to only the records you want to reparent.

Alphabetic Command Reference

13

As this command affects the parenting of groups of records, it is advisable to make a

backup prior to using it.

child_rs = SesameSearch("Countries.db", "Cities", 0, 2, "", "", "",
"!City=A..");
if(rs > -1)
{
 parent_rs == SesameSearch("Countries.db", "Countries", 0, 2, "", "",
"", "!Country=United Kingdom");
 if(parent_rs > -1)
 {
 if(SesameTotal(parent_rs) == 1)
 {
 SesameReparent(parent_rs, "Cities Subform", child_rs);
 }
 SesameClose(parent_rs);
 }
 SesameClose(rs);
}

SesameRunProgram(rs, global_program, program, test_only)
Parameters: rs as 32 bit integer, global_program as string, program as string,

test_only as 32 bit integer

Returns: string

SBasic Function: @XResultRunProgram()

This command runs an SBasic program, specified as a string argument, on every

record in a result set. It returns as a string any content written using Write or WriteLn.

The programming is sent to the Sesame engine to be executed. Because it runs on the

engine, the programming must use field names instead of element names. No

commands that reference the user interface, forms, or reports are legal in the supplied

program.

Note to Visual Basic users: This function will not work in Visual Basic as Visual Basic
cannot receive strings as return values from certain types of DLLs. Use
SesameAltRunProgram() instead.

For security, the File I/O commands, Shell commands and Process commands are

disabled by default. These can be optionally allowed using the SERVER CODE FILE I/O

and SERVER CODE SHELL INI file entries, but you should consider carefully before

doing so.

NOTE: Because this method of working with a group of records works directly on the
engine, it is much faster than a normal mass update, but it also is able to provide less
feedback. You should always test this command using a backup of your data to make
sure that is doing what you intend.

Arguments:

rs - "Handle" to a result set

global_program - Programming that you would type into the GLOBAL CODE area.
Must be written in SBasic.

program - Programming to run on each record in the result set. Must be written in

SBasic.

test_only - Flag indicating whether to actually run the program. 0 runs the program.

1 tests whether the program compiles without running it.

As the program compiles on the engine, the syntax error interface available in the

Sesame Programming Editor is not available, however, SesameError will be set if the

program fails to compile. To test your program, set test_only to 1 and

check SesameError.

Alphabetic Command Reference

14

str = SesameRunProgram(rs, "", pgm, 0)

SesameSearch(filename, db, search_mode, search_syntax, criteria,
username, password)
Parameters: filename as string, db as string, search_mode as 32 bit integer,

search_syntax as 32 bit integer, criteria as string, username as string, password as

string

Returns: 32 bit integer

SBasic Function: @XResultSetSearch()

This command is the primary way to obtain a new result set on which the other

Sesame API commands will operate. This function performs a search in the specified

database and, upon completion of the search, returns a "handle" to the result set

containing the records that match the search. A return value greater than -1 indicates

success.

SesameSearch takes seven arguments:

filename - the path and filename of the application to open.

db - the name of the database in that application in which to search.

search_mode - specifies whether records must match all or any of your criteria to be
included. Valid values are as follows:

0: Records must match all of the criteria

1: Records must match any of the criteria

search_syntax - specifies whether the criteria use Q&A compatible syntax or Regular
expressions syntax. Full documentation of Q&A search syntax is available in the

Sesame User Guide supplied with Sesame Database Manager. Valid values are as

follows:

2: Q&A compatible syntax

3: Regular expressions syntax

criteria - one or more parameters, each having the form "!fieldname=spec". These
specs provide the criteria that determine which records are included in the result set.

The "spec" portion is whatever you would have typed into the Sesame retrieve spec.

As this command accesses the underlying database directly, use database names and

field names.

Separate multiple criteria with %. Do not put extra quote marks around specs with

spaces. Do not put spaces around the equal sign between the field name and the spec

or between the bang (!) and the field name.

Examples (Q&A syntax):
!Key=1000 // Finds records where Key equals 1000
!Key== // Finds records where Key is blank
!Key=/= // Finds records where Key is not blank
!City=San Francisco%!Key=>1000 // Finds records where City
 // equals "San Francisco" and Key
 // is greater than 1000

To create a result set including all records in the database, use a zero-length string

("") as the criteria.

To create an empty result set, use criteria that will match no records, such as

searching for records where a field that should never be blank is blank.

Alphabetic Command Reference

15

If you specified Q&A syntax in the search_syntax parameter, use Q&A syntax in your

specs. If you specified regular expressions syntax in the search_syntax parameter, use

regular expressions syntax in your specs.

username - username allowing access to the desired application and database. If the
application does not use security, pass a zero-length string ("").

password - password allowing access to the desired application and database for the
specified username. If the application does not use security, pass a zero-length string

("").

Usage Examples:

rs == SesameSearch("Customers.db", "Customers", 0, 2, "", "", "", "")

rs == SesameSearch("Data\Customers.db", "Customers", 0, 2, "", "!City=San
Francisco%!Key=>1000", "", "")

rs == SesameSearch("Data\Customers.db", "Customers", 0, 2, "",
"!Key=>1000", "my_username", "my_password")

In the examples above, after the search is performed, a "handle" to the result set is

returned to RS. RS is then used to operate on the result set. It is very important
that you close any result set you open using the SesameSearch command
after you are finished with it by calling SesameClose() on that result set.

Of the two types of retrieve spec programs usable in Sesame retrieve specs, this

command supports one. You can use a retrieve spec program as long as the program

does not reference any fields. So, for example you can check if a date is younger than

1000 days old using:

rs == SesameSearch("Customers.db", "Customers", 0, 2,
"!Date_Entered=>{@Date - 1000}")

But you cannot check a different field using:

rs == SesameSearch("Customers.db", "Customers", 0, 2,
"!Company={Date_Entered > (@Date - 1000)}")

If using a retrieve spec program, the program must be written in SBasic.

SesameSetCurrentPosition(rs, pos)
Parameters: rs as 32 bit integer, pos as 32 bit integer

Returns: Nothing

SBasic Function: XResultSetCurrentPosition()

SesameSetCurrentPosition tells Sesame which record in the result set should be

current. It is the current record that is affected by the other Sesame API commands.

Typically, you would use this command in a loop from 1 to the value returned by

SesameTotal to operate on all of the records in the result set.

This command takes as its first argument the "handle" to the result set. The second

argument is the position of the record you want to make current.

SesameSetCurrentPosition(rs, 5)

SesameSetValue(rs, fn, val)
Parameters: rs as 32 bit integer, fn as string, val as string

Returns: Nothing

SBasic Function: XResultSetValue()

Alphabetic Command Reference

16

This command sets the value of the specified field in the current record to the

specified value.

This command takes as its first argument the "handle" to the result set. The next

argument is the field name of the field to set. The last argument is the actual value to

set.

This example sets the FullName field.

SesameSetValue(rs, "Company", "ABC Corporation")

Note: Since the values are placed in the database fields directly, they do not go

through the formatting and type checking as they do when you type them into a form.

If you set a field value that is not the correct type, the results will be unpredictable. ,

For example, if you post a non-date value to a date field, it will actually keep that

value even if it cannot be determined to be a date.

SesameSetValue(rs, "Date_Entered", "ABC Corporation")

The example above will put "ABC Corporation" (an invalid date) in the Date_Entered

field. In form view in Sesame, such a date would usually appear blank.

SesameSort(rs, sort_vals)
Parameters: rs as 32 bit integer, sort_vals as string

Returns: Nothing

SBasic Function: XResultSetSort()

Sorts a result set.

This command takes as arguments the "handle" to the result set and the list of sort

values.

The sort_vals argument is a semicolon-separated list with the form

field_name:direction.

field_name - The name of the underlying database field by which to sort. Note that
this is the field name, not a layout element name.

direction - The sort direction. Use -1 for ascending sort. Use 1 for descending sort.

For example, "LastName:-1;FirstName:1" - sorts first by LastName in ascending order

and then by FirstName in descending order.

SesameSort(rs, "Key:-1")

SesameSubSet(rs, field_name)
Parameters: rs as 32 bit integer, field_name as string

Returns: 32 bit integer

SBasic Function: @XResultSetSubset()

This function accepts a currently open result set handle and the name of a subrecord

field. It returns a handle to a result set representing the naturally linked records that

are subrecords of the current parent record in the open result set. A return value

greater than -1 indicates success.

This function accepts two arguments: the handle of the parent result set and the name

of the SUBRECORD field in the parent record that defines the natural link. This allows

you to quickly access the natural children of a given parent record without needing to

do key-based lookups.

// Get a parent record

Alphabetic Command Reference

17

parent_rs == SesameSearch("Countries.db", "Countries", 0, 2,
"!Country=United Kingdom")
if(parent_rs > -1)
{
 // Get child records
 child_rs == SesameSubSet(parent_rs, "Cities Subform")
 if(child_rs > -1)
 {
 // Get the count of cities for this country
 count == SesameTotal(child_rs)
 SesameClose(child_rs)
 }
 SesameClose(parent_rs)
}

SesameTotal(rs)
Parameters: rs as 32 bit integer

Returns: 32 bit integer

SBasic Function: @XResultSetTotal()

This function returns the total number of records in the result set. Its only argument is

the "handle" to the result set.

count == SesameTotal(child_rs)

Special Command Reference

SesameAltGetValue(rs, fn, limit, output)
Parameters: rs as 32 bit integer, fn as string, limit as 32 bit integer, output as string

Returns: 32 bit integer

SBasic Function: @XResultSetValue()

Note: This function is a special version of SesameGetValue() specifically for languages
like Visual Basic which cannot receive strings as return values from certain types of
DLLs. If you are not using one of these languages, use SesameGetValue() instead.

This function returns the length of the value in the specified field. It obtains this field

value from the current record. When this function runs, the output parameter is set to

the field value itself.

This command takes as its first argument the "handle" to the result set. The second

argument is the field name of the field to return. The third argument, limit, is the

maximum length of value to write to output. The output argument is a string which

can accept a value of a length no less than limit.

To use this function in Visual Basic, declare a string of the same length as limit. After

you run SesameAltGetValue, use the return value to close up the empty space at the

end of output.

Dim strOut As String * 1024
Dim lngLen As Long
Dim strVal as String

 ' Get value from the Sesame record
 lngLen = SesameAltGetValue(lngRS, "MyField", 1024, strOut)

 ' Strip off the extra space
 strVal = Left(strOut, lngLen)

SesameAltRunProgram(rs, global_program, program, test_only, limit, output)

Alphabetic Command Reference

18

Parameters: rs as 32 bit integer, global_program as string, program as string,

test_only as 32 bit integer, limit as 32 bit integer, output as string

Returns: 32 bit integer

SBasic Function: @XResultRunProgram()

Note: This function is a special version of SesameRunProgram() specifically for
languages like Visual Basic which cannot receive strings as return values from certain
types of DLLs. If you are not using one of these languages, use SesameRunProgram()
instead.

This command runs a SBasic program, specified as a string argument, on every record

in a result set. It returns as a string any content written using Write or WriteLn.

The programming is sent to the Sesame engine to be executed. Because it runs on the

engine, the programming must use field names instead of element names. No

commands that reference the user interface, forms, or reports are legal in the supplied

program.

For security, the File I/O commands, Shell commands and Process commands are

disabled by default. These can be optionally allowed using the SERVER CODE FILE I/O

and SERVER CODE SHELL INI file entries, but you should consider carefully before

doing so.

NOTE: Because this method of working with a group of records works directly on the
engine, it is much faster than a normal mass update, but it also is able to provide less
feedback. You should always test this command using a backup of your data to make
sure that is doing what you intend.

Arguments:

rs - "Handle" to a result set

global_program - Programming that you would type into the GLOBAL CODE area.

Must be written in SBasic.

program - Programming to run on each record in the result set. Must be written in

SBasic.

test_only - Flag indicating whether to actually run the program. 0 runs the program.

1 tests whether the program compiles without running it.

limit - the maximum length of value to write to output

output - a string which can accept a value of a length no less than limit

As the program compiles on the engine, the syntax error interface available in the

Sesame Programming Editor is not available, however, SesameError will be set if the

program fails to compile. To test your program, set test_only to 1 and

check SesameError.

Dim strOut As String * 1024
Dim lngLen As Long
Dim strVal as String

 ' Run program and receive return value
 lngLen = SesameRunProgram(rs, "", pgm, 0, 1024, strOut)

 ' Strip off the extra space
 strVal = Left(strOut, lngLen)

Specific Language Notes

19

Specific Language Notes and Sample Files

Language Version Issues

In each language case, the Sesame API is compiled against a common version of the

library for that language. Some languages have a higher tolerance than others for

version mismatches. If you attempt to use the Sesame API and encounter a version

mismatch issue, please contact Lantica Software Technical Support to request a

version compiled for your system.

Visual Basic/Visual Basic for Applications

Use the samples and libraries in the shared folder. Examples include a Microsoft Excel

spreadsheet and two Microsoft Word merge documents. To see the code behind any of

these samples, open the Word or Excel file and press Alt-F11 to open the Visual Basic

Code Editor.

Samples:

api.xls - Excel Spreadsheet. Contains two macros. Press Alt-F8 to select and run a
macro. Before doing so, edit the marked settings in the code to match your system.

UpdateWorksheetFromSesame - Gets values from Sesame records and fills columns in

the spreadsheet.

UpdateSesameCreditLimit - Picks up values from a column in the spreadsheet and

writes to the Sesame database.

CreditLimitMerge.doc - Word merge document. Macro will run as soon as the
document is opened. An initial confirmation allows you to prevent the merge until you

have edited the settings to match your system. Uses the API to pull Sesame data and

write the merge data file without needing to export from Sesame first. Merges to new

document.

CountriesMerge.doc - Word merge document. Macro will run as soon as the
document is opened. An initial confirmation allows you to prevent the merge until you

have edited the settings to match your system. Uses the API to pull Sesame data and

write the merge data file without needing to export from Sesame first. Demonstrates

using subrecords. Merges to new document.

To use the Sesame API in your own VB or VBA, you must declare the dll procedures. A

text file called declarations.txt is located in the shared folder. You can copy the

declarations for any Sesame API procedure you intend to use from there.

Visual Basic cannot accept strings as return values from certain kinds of dlls, including

the Sesame API. Special alternate functions have been provided for use with Visual

Basic. These are listed in the Special Commands section of this document.

C/C++

To use Sesame API procedures in your code, include shared\sesame_c_shared.h.

When you compile for Windows, include shared\sesame_api.lib on your compile line

or in your compile environment. To run your program, shared\sesame_shared_api.dll

(Windows) or shared/libsesame_shared_api.so (Linux) needs to be copied to your

working directory or a directory in your library path.

Samples:

sesame_api_c_example.cpp - Connects to the Sesame Server and sends data to
standard output based on key values supplied from standard input. A file with sample

data - records.txt - is included. Before compiling, change the marked settings to

match your system. If compiling for Linux, define UNIX (see example below).

Specific Language Notes

20

Usage Examples:
> cat records.txt | sesame_api_c_example
> sesame_api_c_example < records.txt
> type records.txt | sesame_api_c_example

Example compile command lines:

> cl sesame_api_c_example.cpp sesame_api.lib

> g++ -DUNIX sesame_api_c_example.cpp -L. -lsesame_shared_api -o
sesame_api_c_example

PHP

To use Sesame API procedures in your code, include php\sesame_php_api.php. To run

your program, php\sesame_php_api.dll (Windows) or php/sesame_php_api.so (Linux)

needs to be copied to your php extension directory and the extension loaded. A

sample php.ini file is included in the php folder.

Samples:

main.php - Connects to Sesame Server, retrieves information from the sample
Customers application, and prints values from the retrieved records.

sample_site - Subdirectory containing a set of .php and .html files demonstrating
how to search, add and edit Sesame records in the sample Customers application

using the Sesame API behind a web interface.

Perl

To use Sesame API procedures in your code, load perl\sesame_perl_api.pm. To run

your program, perl\sesame_perl_api.dll (Windows) or perl/sesame_perl_api.so

(Linux) needs to be copied to an accessible directory.

Samples:

main.pl - Connects to Sesame Server, retrieves information from the sample
Customers application, and prints values from the retrieved records.

Python

To use Sesame API procedures in your code, import python\sesame_python_api.py. To

run your program, python_sesame_python_api.pyd (Windows) or

python/_sesame_python_api.so (Linux) needs to be copied to an accessible directory.

Samples:

main.py - Connects to Sesame Server, retrieves information from the sample
Customers application, and prints values from the retrieved records.

Java

Before use, you must compile java\sesame_java_api.java and

java\sesame_java_apiJNI.java. To use Sesame API procedures in your code, load

sesame_java_api. To run your program, java\sesame_java_api.dll (Windows) or

java/libsesame_java_api.so (Linux) needs to be copied to an accessible directory.

Samples:

main.java - Connects to Sesame Server, retrieves information from the sample
Customers application, and prints values from the retrieved records.

Specific Language Notes

21

C#

To use Sesame API procedures in your code, compile in

c_sharp\sesame_csharp_api.cs and c_sharp\sesame_csharp_apiPINVOKE.cs. To run

your program, c_sharp\sesame_csharp_api.dll (Windows) or

c_sharp/libsesame_csharp_api.so (Linux) needs to be copied to your working

directory or a directory in your library path.

Samples:

main.cs - Connects to Sesame Server, retrieves information from the sample
Customers application, and prints values from the retrieved records.

Example compile command lines:

> csc main.cs sesame_csharp_api.cs sesame_csharp_apiPINVOKE.cs

Reader's Notes

22

Reader's Notes

Reader's Notes

23

