

This free back issue of
THE QUICK ANSWER is provided courtesy of…

The Monthly Newsletter for Sesame Database Manager

http://www.insidesesame.com
Read a Free Issue of Inside Sesame!

AND

Makers of Sesame Database Manager
Compatible with Symantec Q&A™

http://www.lantica.com

http://www.insidesesame.com/
http://www.lantica.com
http://www.insidesesame.com/
http://www.insidesesame.com/IS0601MBD.pdf
http://www.lantica.com/
http://www.lantica.com/

June 1996
Volume 7, Number 6

Answer
Quick

TM

The Independent Guide to Q&A® Expertise

The

1 Who Needs Custom Menus?
Bill Halpern

2 Editorial
Tom Marcellus

4 QuickTip: Personal Startup Switch
and Macro File
Alec Mulvey

5 Pop-Up Selection Lists and Large Databases
Tom Marcellus

8 QuickTip: Count Your Blessings
(and Your Parentheses)
Tom Marcellus

9 @Help
Dave Reid

10 Choose Your Phone Number to Auto-Dial
Gordon Meigs

11 QuickTip: Put On-Record-Exit
Programming to Work
David E. Dvorin

11 QuickTip: Enter Fractions or Decimals
Tom Marcellus

12 The Program Spec: Strung Out on @Instr
Jeff Nitka

13 QuickTip: Indent Subtotal and
Subcount Labels to Improve Reliability
Tom Marcellus

14 (Conceivably) Useful Date Calculations
Tom Marcellus

15 Make Your Macros Loop the Loop
Jeff Nitka

Who Needs
Custom Menus?
WILLIAM HALPERN

Figure 1. Page 1 of a “custom menu system” that gives users access to the entire
application from a single convenient screen. The three dark rectangles are fields.

Continues on page 3

Tired of assembling and debugging custom menu systems that
ultimately prove unreliable? Here’s a solution that simplifies access to
application tasks by placing them on a single screen.

STARTING with Q&A 4.0 for DOS, you can create and use custom
menus in addition to adding up to six new selections on the Q&A
Main menu. You can even replace Q&A’s menu system with a custom

system. You can add to, re-create, or replace any Q&A menu with one that
performs regular Q&A functions or runs custom procedures by executing
macros.

Creating a stable custom menu system, however, can be a daunting
task. Replacing Q&A’s entire menu system is a complex and tedious
process, likely to wind up blocking access to otherwise useful Q&A
features. Custom menus designed to work with regular Q&A menus are
further complicated because your custom menus can be used only at the
proper points in Q&A. Run their selections from the wrong location, and
you put your data at risk. On top of all this, Q&A doesn’t like mixing
custom menu driven operations with regular keyboard macros—it
sometimes “forgets” where it is and executes the macros improperly.

When implemented with care and properly used in the system, custom
menus are the greatest thing since sliced bread for the Q&A developer. I’ve
used them in countless applications with great success. But I’ve also had to
rescue clients from custom menu systems that worked unpredictably.

5.0 to the rescue
Then along came Q&A 5.0. Using the new @Msgbox, @Askuser, @Exit,

2 The Quick Answer ● June 1996

Answer
Quick

TM

The Independent Guide to Q&A® Expertise

The

Editor Tom Marcellus

Publisher Michael Bell

Copy Editor Laurie Moloney

Production Editor Paul Gould

The Quick Answer (ISSN 1052-3820) is published

monthly (12 times per year) by Marble

Publications, Inc., 9717 Delamere Ct.,

Rockville, MD 20850.

 Cost of domestic subscriptions: 12 issues, $79; 24

issues, $142. Outside the U.S.: 12 issues, $99; 24

issues, $172. Single copy price: $10; outside the

U.S., $12.50. All funds must be in U.S. currency.

Back issues are available upon request, for the

same price as a single copy.

Second-class postage paid at Rockville, MD.

POSTMASTER: Send address changes to

The Quick Answer, PO Box 9034, Gaithersburg,

MD 20898-9034.

Copyright © 1996 by Marble Publications, Inc. All

rights reserved. No part of this periodical may be

used or reproduced in any fashion whatsoever

(except in the case of brief quotations embodied

in critical articles and reviews) without the prior

written consent of Marble Publications, Inc.

Address editorial correspondence, @HELP

questions, or requests for special permission to:

Marble Publications, Inc., The Quick Answer, PO Box

9034, Gaithersburg, MD 20898-9034. Phone

800-780-5474 or 301-424-1658. Fax 301-424-1658.

CompuServe 73370,1575. Prodigy NEPY97A.

For Q&A technical support, call Symantec:

541-465-8600.

Q&A is a trademark of Symantec Corp. Other brand

and product names are trademarks or registered

trademarks of their respective holders.

This publication is intended as a general guide. It

covers a highly technical and complex subject and

should not be used for making decisions

concerning specific products or applications. This

publication is sold as is, without warranty of any

kind, either express or implied, respecting the

contents of this publication, including but not

limited to implied warranties for the publication,

quality, performance, merchantability, or fitness for

any particular purpose. Marble Publications, Inc.,

shall not be liable to the purchaser or any other

person or entity with respect to any liability, loss,

or damage caused or alleged to be caused directly

or indirectly by this publication. Articles published

in The Quick Answer do not necessarily reflect the

viewpoint of Marble Publications, Inc.

Editorial
T O M M A R C E L L U S , E D I T O R

YOU’LL love Colorado Springs, Colorado, in October, especially if
you’re there to attend the National Q&A User Group’s annual
weekend bash and The Quick Answer’s day-long Q&A Master’s

Seminar. Details in this issue.
Since Q&A 4.0 for DOS arrived on the scene, so much has been written

on building, coddling, and straightening out custom menus and custom
menu systems that they’ve become a kind of bugaboo. On the one hand,
they let you organize, display, and run application-specific macros, so they
can be enormous productivity boosters. On the other, you have to design
them just so, and you hear reports of by-the-book custom menus going
haywire when you least expect it.

As Bill Halpern explains in this month’s lead article, Q&A 5.0 gives you
an out. Depending on the application, you can display and run dozens of
macros from a single application control screen. His inventive approach is
worth a look, even if you’re still having a love affair with custom menu
systems.

Among Q&A 5.0’s new features you’ll find powerful commands to
display pick-lists of items from external lookup databases. You can get
yourself into a pickle, though, when the lookup database contains scads of
records. You’ve waited way too long for the list to appear—“is it going to
appear?”—but you can’t cancel the command. I’ll show you how to restrict
the range of records that appears on your pick-lists in a way that simplifies,
not exacerbates data entry.

Last month, Bill Halpern teamed up a modem, a couple of batch files,
and Q&A’s @Shell command to make Q&A auto-dial the phone number in
a database record. Gordon Meigs takes it a step further with a handy point-
and-click technique that tells Q&A which of several phone numbers in the
record to dial.

Some multi-step processing tasks involve so many variables that you
shudder at the thought of entrusting the entire procedure to one macro. Jeff

Nitka shows you a clever “divide and conquer” technique that loops a
macro the exact number of times necessary to process each set of variable
retrieval parameters. QA

Due to a goof at the bindery, you might have received the May issue with

several pages out of order. If so, open the newsletter to expose the staples

and pry up the points with a letter opener or knife. Remove the inside

sheets that are out of order, reinsert them in the proper order, then press

the staple points back down. We apologize for the inconvenience, but

heck, you now know how to bind a newsletter!

The Quick Answer ● June 1996 3

Figure 2. Page 2 of the application menu.
The two dark rectangles are fields.

@Save, @Color, and—most importantly—@Macro
commands, I found a way to circumvent all my old
custom menu problems.

@Msgbox lets you pass messages to the user.
@Askuser lets you prompt for instructions on how to
proceed. @Exit and @Save allow you to control when and
how a user exits a record. The @Color command, along
with the new custom color palette, lets you create
invisible fields, and @Macro lets you conditionally
execute a macro that can perform just about any task you
want. Combining these features, you can create a “custom
menu system” for an application that looks like Figures 1
and 2.

Those with sharp eyes will recognize that this
“custom menu” looks suspiciously like a database record.
That’s exactly what it is—a one-record database that can
be changed only by the developer. In this case, it serves as
the application Main menu for a medical patient tracking
system that lets users run all the tasks in the application
that would otherwise have to be run from a custom menu
system. The beauty of it is that it makes for smooth,
seamless use of the application while keeping Q&A’s
standard menus intact. And by performing all the
application’s tasks via programmed @Macro commands,
it overcomes the inherent problems associated with
custom and replacement menu systems.

How it works
The trick to this record-based menu system is making it
work like a real replacement menu system. You want to
keep the user in the menu system—within the operations
that the menu selections allow—as far as possible.

The macro that initializes the application displays the
record-based Main menu. In this application, the
Call MENU.DTF macro is executed by pressing
the Alt-1 hot key combination. As you can see in
the sample macro that follows, all the macro
does is “press” Esc three times, then perform a
File / Search/Update on MENU.DTF, “pressing”
F10 at the Retrieve Spec to display the one and
only record in the database:

<begdef><alt1><name>"Call<sp>MENU.DTF"<vidoff>
<esc><esc><esc>fs<home>MENU.DTF<enter><f10><enddef>

To exit the menu record, the following Quit
Menu macro resaves the record, then exits to the
Q&A Main menu:

<begdef><nokey><name>"Quit<sp>Menu"<vidoff>
<capsf10><esc><enddef>

Who Needs Custom Menus?
Continued from page 1

The program in the one-character labeless field in the
top left corner of the form (see Figure 1) makes it
impossible to add another record to the database. Another
field at the beginning of the second to last line holds the
bulk of the programming. The field at the end of the
second to last line stores the user’s menu selection.

The first field is programmed like this:

< #1: If @Add Then { @Msgbox(
 "You Cannot Add","Records to this Menu","");
 @Exit };
 If @Update Then Goto #10

If the user opens MENU.DTF in Add Data mode, the
program displays a custom error message that freezes the
screen, then exits the database when the user presses
Enter. If the user opens the database correctly in Search/
Update mode, the cursor moves to the field where the
user is prompted to type in the menu selection number.

For the system to work, there must be one record in
the database. Because the program precludes adding a
record, be sure you create and save the single record (just
place an “X” in the first field so Q&A will let you save it)
before you program the database.

The program for field #10 is as follows:

> #10: If #10 = "" Then Goto #10 Else Goto #11

This program returns the user to the selection field if
it’s left blank, and moves to the selection programming
field (field #11) on entry of a valid menu selection
number. The programming in the last field—field #11—is
shown in Listing 1:

Listing 1. The program for field #11.

< #11: @Color(#11,13,5);
If #10="X" Then {#10="";@Macro("Quit Menu")};
If #10="1" Then {#10="";@Macro("Add New Doctor")};

4 The Quick Answer ● June 1996

If #10="2" Then {#10="";@Macro("Add New Patient")};
If #10="3" Then {#10="";@Macro("Add New Visit")};
If #10="4" Then {#10="";@Macro("Add New Proc")};
If #10="5" Then {#10="";@Macro("Schedule Patients")};
If #10="6" Then {#10="";@Macro("Schedule")};
If #10="7" Then {#10="";@Macro("Search for Doctor")};
If #10="8" Then {#10="";@Macro("Patient Search")};
If #10="9" Then {#10="";@Macro("Latest Visit")};
If #10="10" Then {#10="";@Macro("Search Proc")};
If #10="11" Then {#10="";@Macro("Print Patquest")};
If #10="12" Then {#10="";Goto #30};
If #10="13" Then {#10="";Goto #30};
If #10="14" Then {#10="";Goto #30};
If #10="15" Then {#10="";@Macro("Print H&p Letters")};
If #10="16" Then {#10="";@Macro("Print Admit H&p")};
If #10="17" Then {#10="";@Macro("Labels")};
If #10="18" Then {#10="";@Macro("Doc Labels")};
If #10="19" Then {#10="";@Macro("One Wk Schedule")};
If #10="20" Then {#10="";@Macro("Two Wk Schedule")};
If #10="21" Then {#10="";@Macro("One Month Schedule")};
If #10="22" Then {#10="";@Macro("Total Schedule")};
If #10="23" Then {#10=";Goto #20}

Of course, you’ll substitute your own task
descriptions and macros, but your program’s structure
will follow similar lines.

In the menu form for the actual application, there’s
another page of menu subchoices for selections that
require multiple or additional choices. (You can use up to
10 pages.) The Goto #20 and Goto #30 commands for
selections 12, 13, 14, and 23 (see Listing 1) move the user
to a similar selection field on the second or third page.

When the cursor enters the selection field—field
#11—the @Color command (see Listing 1) changes its
color to keep it invisible—only the cursor and value show.
This makes the form look less like a record, and more like
a custom-designed menu selection screen. Entering a
valid selection blanks the selection field (to keep the
record clean for its next use) and executes the associated
macro that, in turn, performs the selected task.

Let’s look at one of the selection macros to see how
they work.

The macros
If the user wants to add a new physician to the doctor
database (DOCTOR.DTF), the program clears the entry
field and runs the following pre-recorded Add New Doctor
macro:

<begdef><nokey><name>"Add<sp>New<sp>Doctor"<vidoff>
<capsf10>a<home>doctor<enter><enddef>

The macro saves and exits the MENU record to the
File menu. It then “presses” A for Add Data (make sure
you have Q&A set to Automatic Execution), Home to clear
the filename prompt, then enters the name of the database
(Doctor). A blank record appears to add the new
physician.

It sounds simple enough. But there’s another trick
you can use to make your database menu system really
sparkle. If you left it at this, when the user was finished
entering one or more new record(s) in the DOCTOR
database and exited, Q&A would return to the File menu,
not the original MENU record. To return the user to the
MENU record, you can add a programming statement like
this to the last required field in each database used by the
application:

> #999: If @Add Then {
If @Askuser("Do You Want to Add","Another Doctor?","")
 Then @Save Else @Macro("Exit Docs") }

Then, create the following macro:

<begdef><nokey><name>"Exit<sp>Docs"<vidoff>
<capsf10><alt1><enddef>

Here, the @Askuser command asks the user if another
record is to be added. If the answer is “Yes,” the @Save
command saves the record and displays another blank
record to be filled. If the user answers No, the program
invokes the Exit Docs macro which, in turn, saves the
record and exits, then invokes the Alt-1 macro that recalls
the MENU.DTF menu record.

That does it. It might seem like a lot of work, but if
you want a smooth, reliable, and seamless menu system
fully tailored to your client’s requirements, it’s worth the
time you’ll invest creating it. QA

Bill Halpern is executive vice president of Professional Computer

Technology Associates in Newtown, Pennsylvania. Bill has been

designing and installing Q&A business applications for the past eight

years. 215-598-8440, CompuServe 71023,356.

Personal Startup Switch and Macro FileQuick
Tip When running Q&A in a multiuser

environment, you can use the -P startup

switch to specify the path to the QA.CFG

configuration file that stores the user’s

Network ID, printer setup, global options, recently used file list,

and the like. What isn’t well known, though, is that Q&A will also

use a macro file stored in the same path as long as it’s named

QAMACRO.ASC. Therefore, users can have not only their own

personal configuration files, but their own macro files as well.

What’s more, they can start Q&A with the -AL (autoload) or the

-AD (autoload default) switch to specify a different macro path

and file name. QA

Alec Mulvey, Keyword Training & Consultancy, Ascot, England.

The Quick Answer ● June 1996 5

Pop-Up Selection Lists
and Large DatabasesAnswer

Quick
TM

The

TOM MARCELLUS

When the lookup database contains so
many records that your pick-list takes
forever to appear, you need a way to
control the selection range without
hampering data entry.

YOU can simplify data entry by taking advantage of
Q&A 5.0’s XUserselect command to display pick-
lists of items from an external database. But you’ll

run into a problem if the lookup database contains too
many records. A mile-long pick-list can be more of a
handicap than a help, and you can’t wait forever while
Q&A strains to compile and display it. You need to restrict
the range of records on the pick-list in a way that
simplifies, not complicates data entry.

With XUserselect you can’t control the quantity of
selections on a pick-list. If the lookup database contains
1,000 records, XUserselect will include them all.
Depending on available memory, Q&A will display up to
about 3,200 items on a pick-list, but unless you have a
lightning fast PC, you’ll wait and wait (and wait) while
Q&A compiles and displays a list of that magnitude.

This is why if your lookup database contains more
than a few hundred records, you’re better off using the
XUserselectR range command. You can then control the
range of selections that appears on your pick-list, Q&A
will display the list much faster, and you’ll have an easier
time finding the item you’re after.

An example
Suppose you have a 5,000-record CUSTOMER database
indexed on the Company Name field. You want to
program a sales order database to display a pick-list of
companies, and use your selection to retrieve the shipping
and billing address, terms, and so forth. If you use
XUserselect, or XUserselectR with an open range, Q&A
will try to create a pick-list containing all 5,000 company
names and fail. After a lengthy delay, Q&A will offer to
display the first 3,200 or so—but won’t display the
remaining 1,800.

If, on the other hand, you use XUserselectR and
specify the Company field in the current record as the

starting and ending range, you can type “C” in it and
press Enter to get a pick-list of all the companies that
begin with the letter “C.” The shorter list will display
more quickly and contain only a few hundred or so
company names. If you type “CR” to further restrict the
range, a shorter list of companies beginning with “CR”
will display even faster. Your pick-list will include
Crabapple Carpets, Cracker Jack Roofing, Creaky
Flooring, and so forth.

Clearly, there’s an advantage to restricting the range
of pick-list items from a large database, but how do you
decide on—and enforce—the optimum range? The
following factors should be taken into account:

• The number of records in the lookup database.

• The speed of the PC (including whether or not it’s on
a network, and how responsive the network is).

• The length of time you’re willing to wait (or make
users wait) before Q&A displays the pick-list. (For
most users, a few-second delay won’t seem
unreasonable.)

• The number of items you want the pick-list to
include.

Characteristics of names databases
Table 1 (see page 6) shows the average occurrence of the
first letter of a person’s last name in a database of 5,000
records, 10,517 records, and 16,665 records. My guess is
the spread should be about the same for databases keyed
on company names.

Take the names that begin with the letter “B.” In the
5000-record database, there are 467 of them, and Q&A will
display them all on a pick-list. In the database of 10,517
records, though, you’ve got 1,052 “B” names, and you’ll
wait considerably longer for the pick-list to appear. In a
database of 16,665 records, you’ve got 1721 “B” names,
and you might have enough time to do your nails.

The point is, with a large lookup database, you
should force the entry of at least two characters to restrict
the pick-list range—that is, “BA,” “BR,” and so forth. An
extra character or two helps Q&A display the pick-list that
much faster.

6 The Quick Answer ● June 1996

Table 1. Typical occurrence of the first
letter of a name in a 5,000-record, 10,517-
record, and 16,665-record database.

Now, you can’t expect users to know that the quantity
of “B” names requires a minimum two-letter entry, while
the smaller quantity of “A” names might require just one.
How do you inform users that more than one character is
required, and make sure they enter them before allowing
the lookup to execute?

Get the facts on your lookup database
One way is to create a lookup table with an entry for any
alphabetic group that requires multiple characters (see
Figure 2), and a program that checks it before executing
the pick-list command.

Before creating the table, you’ll
need a report that counts the names
beginning with “A,” “B,” “C,” and so
forth. Name the report something
like Count by Alpha Group and include
all the records in the lookup
database. At the Column/Sort Spec,
type 1,I (column 1, invisible) in the
Last Name field, then create the three
derived columns shown in Figure 1.
At the Print Options screen, be sure
Totals Only is set to No.

Your alphabetic group
percentages should approximate
those in Table 1. The count of names
in each group will tell you what you

need to know to construct your lookup table. (See Figure
2.)

Suppose your lookup database has an alphabetic
spread like the 10,517-name database in Table 1. And
suppose you don’t want to wait more than a few seconds
for the pick-list to display, and you want it to include no
more than 100 or so names. In the Key column of the
lookup table for the primary database (not the lookup
database), include the letter of each alphabetic group that
requires the entry of multiple characters. Then, in column
1, enter the number of letters required.

Figure 1. Derived columns for the Counts by Alpha Group report.
(The inset shows the output.) If your Report Global Format
Options Default to repeating values is set to No, delete the “R”
code from the first derived column’s Column/Sort Spec.

Figure 2. A sample lookup table for a 10,000-record lookup database.

The Quick Answer ● June 1996 7

Looking at the table shown in Figure 2, you’ll
notice that the letters E, I, J, O, Q, U, X, Y, and Z aren’t
there. These relatively small alphabetic groups (at
least in a typical 10,000-record names database)
require only the first letter of the last name to display
the pick-list, so there’s no need to include them in the
table.

Now look at Table 1. The 10,517-record column
indicates 316 “A” names, and 1,052 “B” names. So, in
the lookup table for the “A” names, you specify “2,”
and for the “B” names you specify “3.” This way, to
display a pick-list of “A” names, you’ll have to enter
the first two letters of the name. For “B” names, the
first three letters will be required. And your program,
as you’ll see, will enforce the rule.

Primary database design and programming
All that’s left to do is program your primary database
(your sales order or invoice database) to set the range
and display the pick-list. Figure 3 shows a primary
database that, for illustration purposes, includes just
the customer’s name and address fields, and Listing 1
shows a sample program for its Last Name field.

Listing 1. Sample program for the Last Name
field in the primary database.

> If Last Name = ""
 Then {
 @Msg("Type first letter of Last Name and press ↵");
 Goto Last Name };

 If @Len(Last Name) < @Lookup(@Left(Last Name, 1), 1)
 Then {
 @Msg("This name range requires the first "
 + @Lookup(@Left(Last Name, 1), 1) +
 " characters of last name");
 Goto Last Name }

 Else If @Add Then
 XLookup(
 "CUSTOMER", @XUserselectR("CUSTOMER",
 "List Code", "List Code",
 Last Name, Last Name),
 "List Code", "First", First Name,
 "Last", Last Name, "Street", Street,
 "City", City, "State", State, "Zip", Zip)

How the program works
During data entry in the primary
database, if the Last Name field is left
blank, the program displays an
informative message and returns to
the field. If the field isn’t empty, but
the number of letters—@Len(Last
Name)—is less than the number
specified for the alphabetic group in
the lookup table, a message tells you
how many letters are required for the

Lookup Database Design
and Programming
You want to ensure your pick-list includes all the names in the

lookup database. Account numbers or customer IDs might be

unique, but they aren’t likely to tell you who the customer is.

If your lookup database contains names, and you have

fields for the first name, last name, and ZIP code, you can add a

field to the database to contain a unique pick-list code

comprised of those three elements.

After adding the List Code field to the database, make it

read-only and Speedy/Unique. Then, Mass Update the database

with an Update statement like this in the new List Code field:

#1 = Last Name + ", " + First Name + @Str(Zip)

This way, the List Code field for customer Lisa Carter in ZIP

code 37688 will contain Carter, Lisa37688.

To create the same List Code entries for records you later

add or edit, you can use an on-record-exit program like this:

If @Modified Then
List Code = Last Name + ", " + First Name + @Str(Zip)

Because Q&A uses only the first 16 characters to

determine if a value is unique, this scheme isn’t foolproof (you

could have two Lisa Carters in ZIP code 37688, but your pick-

list will include only one of them), though you should find it

workable for most applications.

Figure 3. Selecting the customer from the pick-list. Here, the “T” names
required entry of the first two characters of the last name, so the user entered
“Tr” to display a pick-list of all the customers whose last names begin with “Tr.”

8 The Quick Answer ● June 1996

alphabetic group you want to display, and the cursor
returns to the field so you can supply them. (The program
doesn’t prevent you from voluntarily entering several
characters right off the bat to restrict the pick-list.) See the
sidebar, “Making Data Entry Even Easier.”

When the program decides that the number of letters
in the Last Name field is sufficient, control passes to the
Else portion of the program, the pick-list is displayed, and
your selection then becomes the external key value for the
XLookup. (Notice that the XUserselectR command is
inside the XLookup command.) The XLookup, then,
retrieves the information for the Last Name, First Name,
Street, City, State, and Zip fields. (You can lookup
additional fields if you like—just add them to the
XLookup command.)

If you have other alphabetically based pick-list fields
in the same database, you can use columns 2, 3, and 4 of
the lookup table to enter the number of characters
required to restrict them, and modify their programs
accordingly. QA

Tom Marcellus is editor of The Quick Answer and author of PC World Q&A

Bible, published by IDG Books. His QuickClick Calendar Plus—a time- and

activity-tracking database for Q&A 5.0—along with his QuickClick

RecordFinder for Q&A 5.0, are available from Marble Publications,

publisher of The Quick Answer.

Making Data Entry Even Easier
You’ll run into a small snag with the approach in this

article, but there’s a workaround. Suppose you enter the

first letter of the name when multiple letters are required

for the name range. In this case, the program will return the

cursor to the Last Name field, and it will wind up under the

letter you’ve already typed. Your natural tendency will be

to type the next letter, but you’ll overwrite the first one if

you do. Ideally, Q&A would place the cursor to the right of

whatever letter(s) you’ve already typed.

You can make Q&A do this with the following macro

that “presses” the End and Insert keys:

<begdef><nokey><name>"End/
Insert"<vidon><end><ins><enddef>

This way, Q&A will place the large insert cursor in the next

character position—your signal that another letter is

required. When you’ve recorded and saved the macro,

simply place the @Macro command in an on-field-entry

statement like the following in the Last Name field at the

Navigation Spec:

< If @Add and @Len(Last Name) > 0
 Then @Macro("End/Insert")

Count Your Blessings
(and Your Parentheses)Quick

Tip
Among the most common

programming goofs is not having a

closing parenthesis for every opening

parenthesis—or vice versa. When I receive an error message

after entering a section of code, the first thing I look for is a

typographical error, then a missing semicolon. If I don’t find

any, I count my parentheses from left to right, incrementing the

count by one for each opening parenthesis, and decrementing

it by one for each closing parenthesis. This way, if I wind up

with a positive number, I know there are too few closing

parenthesis. If I wind up with a negative number, I know the

opposite is true. Figure 1 shows how this technique works with

a sample programming statement.
Figure 1. Counting your opening and closing parenthesis
from left to right can help you quickly spot an imbalance.

You can also use this technique to count opening and

closing French braces. QA

Tom Marcellus

The Quick Answer ● June 1996 9

?

@Help
EDITED BY DAVE REID

Rounding Report Columns
I print reports that total my salespeoples’
weekly sales amounts. Since the information
isn’t for accounting purposes, I’d like to round all
the dollar amounts to the nearest dollar,
dropping the cents. How can I do this?

Monica Wilson, Freeport, Illinois

You have several options. The simplest is to format your
money columns for numbers, and set the number of
decimal places to 0. You can use a Column/Sort Spec code
such as the following for each money field (change the
column number and other calculations as appropriate):

Money field: 5, ST, F(N0)

If you want the dollar signs, you can change the
database’s Global Format Options to display only whole
dollars. To do this, select File / Design File / Customize a
File, enter the name of your database, and choose Format
Values. Press F10 to display the Global Format Options
screen, set # of Currency Decimal Digits to 0, and press F10.
You can now print your report without changes, but the
new global setting will be applied to all money fields and
reports in the database.

[If you don’t mind the extra preparation, you can design a sales
summary report that will print whole dollars with dollar signs,
like this:

 Sold
 Last
Rep Name Week
———————— ——-
Adler $3284
Jones $1746
Smith $4740

Here are the Column/Sort Spec and two derived columns
you’ll need:

Rep Name: 1,AS
Sale Amt: 2,I

Heading:
Formula: #1
Column Spec: 50,I

Heading: Sold!Last!Week

Formula: @Text(#1 <> #50,"$"
 + @Str(@Round(@Total(#2, #1),0)))
Column Spec: 3,F(JR)

The totals-only format is accomplished by suppressing the
second column until there’s a break in the first column, not by
making it a Totals-only report at the Print Options screen.—
T.M.]

Problem Opening Large Documents
After upgrading to Q&A 5.0, I encountered a
serious problem. I have several large documents
created in Q&A 4.0 that Q&A 5.0 won’t open. I get
a “Not enough memory to continue” message.
What can I do? I need these documents!

Donna Dawdle, Winnetka, Illinois

The only solution I’ve found is to decrease the document
sizes in Q&A 4.0. If you’ve removed or overwritten Q&A
4.0, you’ll have to reinstall it to make these one-time edits,
or do so on another PC running Q&A 4.0. With the
documents open, you can break them into two smaller
documents (using the F8 Options menu Block Operations
/ Move to File command) and save them to different
filenames you can work with in Q&A 5.0. A quick test I
performed revealed that the document limit in Q&A 4.0 is
about 80 pages, dropping to about 70 pages in Q&A 5.0.

[With the document in two files, you might be able to print it
acceptably using Write’s JOIN command.—Ed.]

Dave Reid is a Symantec senior support analyst providing second-level

assistance to the technical support representatives. He’s also the co-

author of The Q&A 4.0 Wiley Command Reference, published by John Wiley

and Sons, and works as an independent Q&A consultant. PO Box 12083,

Eugene, OR 97440.

Have a nagging question? Send it to @Help, The Quick Answer,

Marble Publications, Inc., PO Box 9034, Gaithersburg, MD 20898-

9034 or fax to 301-424-1658. When writing, please include your

name, address, and phone number, along with your Q&A version

number (and whether DOS or Windows) and a detailed

description of the problem. We will publish those questions we

feel are of general reader interest; individual responses are not

possible.

10 The Quick Answer ● June 1996

Choose Your Phone Number
to Auto-DialAnswer

Quick
TM

The

GORDON MEIGS

Last month, Bill Halpern teamed up a
modem, two DOS batch files, and Q&A’s
@Shell command to make Q&A dial a
phone number in a database record.
This month, Gordon Meigs expands on
the technique, showing how you can
conveniently point-and-click to tell Q&A
which of several phone numbers in the
record to dial.

ONE good idea often leads to another, and Bill
Halpern’s auto-dialing technique in last month’s
The Quick Answer got me thinking. Though I

could program Q&A to dial a database record’s phone
number, what would I do if the record contained several
numbers, any one of which I might want to auto-dial? I
found a solution that makes it a snap, and I’ll show you
how to do it.

Figure 1 shows a portion of a database form (at the
Program Spec) containing fields for three names and three
phone numbers. Field #2, the Dial field, corresponds to
the Dial field Bill described in his article. Field #40, the
Capture field, stores the selected phone number.

To dial any of the three phone numbers, you program
the three name fields and their corresponding phone
number fields so that when you click on one then click on
the Dial field, Q&A copies the number to the Capture field
and dials it.

Q&A and mouse moves
The key to this technique is the way Q&A responds to
field navigation with a pointing device. If you click on
Field A, then click on Field B, Q&A executes Field A’s on-
field-exit program before moving the cursor to Field A.
(Compare this with using key presses to move around the
form. Left arrow, Up arrow, Shift-Tab, and Home-Home-
Home don’t execute on-field-exit programs.) In this case,
clicking on the name or phone number and clicking on the
Dial field, copies the number to the Capture field (on-field-
exit) then executes the Dial field’s on-field-entry program.

Programming the database in this fashion means you

can edit data in the name and phone number fields—or
Tab through them—without causing the Dial field
program to execute.

Programming
You can place the Dial field in any convenient location on
the form. The Capture field doesn’t need to be visible. You
can make it a one-character labeless field, and place it in
an out-of-the- way location on the form. You can also
make it read-only and even set it’s color scheme to make
it blend with the background.

Here’s the program for the Dial field:

< #2 = @Shell("DIAL.BAT "+ #40);
 #2 = "Talk";
 @Msgbox("Pick up phone and","press Enter to talk","");
 #2 = @Shell("RELEASE.BAT ");
 #2 = "Dial"

Bill’s article describes the two DOS batch files you’ll
need to create: DIAL.BAT, and RELEASE.BAT—and
explains how they work So I won’t repeat that here:

 Company Contacts
 Name1: >#10: #40=#11 Tele1: >#11: #40=#11
 Name2: >#20: #40=#21 Tele2: >#21: #40=#21
 Name3: >#30: #40=#31 Tele3: >#31: #40=#31

 Dial: < #2 Capture: #40
 (Click on the name or phone number,
 then click here to dial it)

Figure 1. On-field-exit programs for the name and phone
number fields. You click on any name or number field, then click
on the Dial field to copy the number to the Capture field and dial
it.

Gordon Meigs is vice president and general manager of Professional

Computer Technology Associates of Newtown, Pennsylvania. He teaches

courses and does corporate training on Q&A, and has been designing

and installing advanced Q&A business applications for more than nine

years. 215-598-8440, CompuServe 71023,356.

[Gordon’s right—one good idea often leads to another. I wanted
to be able to place a call to a business contact from any database
I might be working in. So I needed a kind of “plug-and-play”
solution that would display a pick-list of my contacts in any
database, and auto-dial the phone number of the one I selected.

The Quick Answer ● June 1996 11

I started by adding a seven-character labeless field to a
database. I made it a click-on button field named PhoneButton,
formatted it T,JC for center-justified text, and assigned the
value “Phone” to it via an on-record-entry program. (See my
article in the February 1996 The Quick Answer.) The external
database containing the names and phone numbers was
CONTACTS.DTF, so I programmed the new PhoneButton field
this way:

< PhoneButton =
 @XUserselectR(“CONTACTS”, “FullName”,
 “Phone”, “A”, “Z”);
 If PhoneButton <> ““ Then {
 PhoneButton = @Shell(“DIAL.BAT “+ PhoneButton);
 @Msgbox(“Pick up the receiver”,
 “and press Enter to talk.”,””);
 PhoneButton = @Shell(“RELEASE.BAT “) };
 PhoneButton = “Phone”; Chome

This way I can simply click on the “Phone” button for a
pick-list of contacts, then select the one to call. (In my case, the
speedy FullName field in CONTACTS contains the last name,
followed by a space, then the first name.) The XUserselectR
command displays a pick-list of names, returns the phone
number of the selected name to the PhoneButton field, then
executes the rest of the program, dialing the number, and so
forth.

It took just a few more minutes to add the same “Phone”
button field to my other databases and copy the program to
them. Now, no matter which database or record I’m working in,
if it occurs to me to call someone, I can conveniently do so with
a couple of mouse clicks, and without leaving the record I’m
working on.—Ed.] QA

Put On-Record-Exit
Programming to Work

Enter Fractions or Decimals

Quick
Tip

I often use on-record-exit (ORE)

programming to validate a record before

it’s saved. Though it varies from database to database, I generally

check to see if required fields have been filled properly, check the

ranges of certain fields, and perform needed calculations.

Unfortunately, Q&A won’t let you “Goto” a field via an

on-record-exit program, so should a validation check fail, you

can’t return to a problem field to fix it. Working within these

limits, I make the record “unusable” by using the Clear command

to erase the contents of key fields. This includes all fields used by

any operation, such as printing, so the “unusable” records are left

out. It doesn’t matter if the list of fields cleared is long. The Clear

command can clear them quickly.

In addition, I notify the user when a validation fails with

either a @Help screen or @Msg message. This way, the user is

made aware of the fact that the record isn’t valid.

Lastly, I include with the database a Retrieve Spec to

remove the invalid records. Though such records are usually

harmless if left saved, there’s no reason to keep them. The

Retrieve Spec, used in conjunction with the Remove / Selected

Record operation, ensures that the database contains only valid

records. QA

David E. Dvorin, Phoenix Solutions

Quick
Tip

When entering numbers containing

fractions, such as the cost per share of a

stock, you might like the option of typing

the fraction rather than a decimal. Here’s a

program for a CostSh (cost per share)

character field that converts a number containing a fraction (5/8,

3/4, 2/3, and so forth) to the equivalent two-decimal-place

number:

> If @Instr(CostSh, "/") Then CostSh =
 @Round(@Left(CostSh, @Instr(CostSh, " ") -1) +
 @Mid(CostSh, @Instr(CostSh, "/") -1, 1) /
 @Mid(CostSh, @Instr(CostSh, "/") +1, 1),2)

If you enter “27 5/8,” for example, Q&A will return “27.63”

(27.625 rounded off to two decimal places). The program works

by dividing the fraction’s numerator by its denominator, adding

the decimal result to the whole number, then rounding the

number to two decimal places. You can make the program round

the number to three decimal places simply by changing the final

“2” to “3.”

You could also add a Shares number field and TotCost

money field to the database, and program Shares like this to

calculate the total cost:

> TotCost = CostSh * Shares

QA
Tom Marcellus

12 The Quick Answer ● June 1996

Strung Out on @InstrAnswer
Quick

TM

The

The Program Spec

JEFF NITKA

I get a lot of mileage out of Q&A’s @Instr (pronounced
at in-string) function. In addition to using it to
manipulate text values in a database, I use it to

simplify code.
@Instr returns the starting position of the string you

specify within a larger text value. For example, it can tell
you the position of the first space in a field, a marker such
as a “/” or “*” character, or where the “sing” in parsing
begins. If field #100 contained parsing, #101 = @Instr(#100,
"sing") would place “4” in field #101 because the “s” in
sing begins at the fourth character position. If field #100
contained Fourth of*July, @Instr(#100, "*") would return
“10” because the asterisk is at the 10th character position.

@Instr is typically used like this to extract text from a
field. For example, a Contact field in a customer database
might contain a whole name (the first name followed by a
space, then the last name). To extract the last name and
place it in a Last Name field, you could use @Instr this
way:

Last Name = @Right(Contact, @Len(Contact)
 - @Instr(Contact, " "))

Thus, if the Contact field contained Jeff Nitka, the Last
Name field would contain Nitka, while the Contact field
remained unchanged.

You can also use @Instr to tell you whether or not a
specific string occurs within a field. In the following
example, if substandard occurs anywhere in the Review
Comments field, then the Bonus Factor field gets a goose
egg:

If @Instr(Review Comments, "substandard")
Then Bonus Factor = "0"
Else Bonus Factor = ".2"

Simplifying programming
I use @Instr to reduce by half the number of @Xlookups in
a looping routine. Here’s the beginning of a sample loop:

< If @XLu(@Fn, #1, "x#1", "Code") >= "0" and
 @XLu(@Fn, #1, "x#1", "Code") <= "9"
 Then ...

Using @Instr as follows, I can get away with just one
@XLookup per loop:

< If @Instr("0123456789",
 @XLu(@Fn, #1, "x#1", "Code")) > 0
 then ...

@Instr as a verification tool
One of my databases (FORMULA.DTF) stores a list of
ingredients and percentage levels for each product my
company sells. Another database—RAWMAT.DTF for raw
materials—tracks inventory. Each RAWMAT record
contains a raw material, how much of it was consumed,
and the product in which it was used.

I want to ensure that the user enters correct data, so I
use an Ingredient field in FORMULA to store a
concatenation of ingredients, each separated by a
semicolon, like this:

;Ingredient1;Ingredient2;Ingredient3;Ingredient4;

This lets me use an @Instr statement like the following in
RAWMAT’s verification program:

> If @Instr(@XLu("FORMULA", Product, "Product",
 "Ingredient"), ";" + Raw Material + ";") = 0
 Then @Msg(Raw Material + " is not a standard
 ingredient in " + Product)

I surround the Raw Material value with semicolons to
ensure accuracy. To see how this works, consider how the
following statements would behave if the Raw Material
field contained Salt:

If @Instr(";Calcium Salt;Rock Salt;Table Salt;",
 Raw Material) = 0

If @Instr(";Calcium Salt;Rock Salt;Table Salt;",
 ";" + Raw Material + ";") = 0

The first If fragment would return false because although
Salt occurs in the target string value, it isn’t an ingredient
in the list (it isn’t surrounded by semicolons). In contrast,
the second If fragment would return true because ;Salt;
doesn’t occur in the target string. The examples show how
to construct text values as @Instr parameters that ensure
accurate results.

The Quick Answer ● June 1996 13

Simplifying conditionals
You can use @Instr to simplify conditional expressions.
Consider the following sample program:

Product Type = @XLu("ProdInfo", Product,
 "Product", "Type");
If Product Type = "Flammable Liquid"
 or Product Type = "Flammable Solid"
 or Product Type = "Combustible Liquid"
 or Product Type = "Poison"
Then Hazard = "Yes"
Else Hazard = "No"

Assuming Hazard were a Yes/No field, you could
combine the two statements as follows:

Hazard = @Instr(";Flammable Liquid;Flammable Solid;" +
 "Combustible Liquid;Poison;", ";" +
 @XLu("ProdInfo", Product, "Product", "Type") +
 ";") > 0

If you wrote the sample program with negative
comparisons, like this:

If Product Type <> "Flammable Liquid"
 and Product Type <> "Flammable Solid"
 and Product Type <> "Combustible Liquid"
 and Product Type <> "Poison"
Then Hazard = "No"
Else Hazard = "Yes"

Then you’d need to modify @Instr like this:

If @Instr(";Flammable Liquid;Flammable Solid;" +
 "Combustible Liquid;Poison;",
 ";" + Product Type + ";") = 0
Then Hazard = "No"
Else Hazard = "Yes"

Although @Instr can be very useful, you must be
careful with it. If any part of the first argument contains
the second, the function will return a positive value—that
is, a number greater than 0. Otherwise, it’ll return 0. QA

Jeff Nitka works for a chemical manufacturer and develops Q&A

applications part-time for Epoch Software, 908-874-3989. Jeff is the

author of the Program Evaluator, a Q&A program debugging utility

available from Marble Publications.

Indent Subtotal and Subcount Labels
to Improve Report Readability

Quick
Tip

When designing a report, if you specify a subtotal or

subcount, Q&A still prints “Total” or “Count.” Using a Column/

Sort Spec like the following, you can replace the subcount

“Count” label with “Subcount,” and indent it a few spaces to

improve overall readability:

Any field: 2,SC,C,H(5:Count)
State: 1,AS,SCL(Subcount),CL(Total Count)

If you run this as a Totals-only report, you’ll get a

subcount of the number of records for each state, and a total

count at the end, in a report like this:

State Count
----- -----
AK

 Subcount 37
AR

 Subcount 69
AZ

 Subcount 147
CA

 Subcount 1391
CO

 Subcount 165

. . .

============ =====
Total Count 5000

You type the “ ” character by pressing Alt-F10, then Alt-16

on the numeric keypad. The technique works for total and

subtotal labels as well. QA

Tom Marcellus

▲ ▲

▲

▲
▲

▲
▲

▲
▲

14 The Quick Answer ● June 1996

(Conceivably) Useful
Date CalculationsAnswer

Quick
TM

The

Figure 1. Fields and formatting for sample dates database.

TOM MARCELLUS

When you’re at a loss for a date
calculation solution, chances are you
can can use Q&A’s string and arithmetic
functions to arrive at the date you need.

Listing 1. A Q&A program that determines the number of days in
the MyDate month, the number of days remaining in the month,
and the dates of the first and last days of the month.

> FirstDateOfMonth = @Left(MyDate, 8) + "01";

 If @Month(MyDate) <> 12 Then
 LastDateOfMonth = @Todate(@Left(MyDate, 5) +
 @Str(@Month(MyDate) + 1) + "/01") -1
 Else
 LastDateOfMonth = @Left(MyDate, 8) + "31";

 DaysInMonth = @Dom(LastDateOfMonth);

 DaysToEOM = LastDateOfMonth - MyDate

The program returns the first date of MyDate’s month
by replacing the day number with “01.” For all months
but December, the last date of the month is found by
taking the first date of the following month and
subtracting one day from it. (For December, it simply
makes the date December 31.) The number of days in the
month is the day number of LastDateOfMonth, and
MyDate is subtracted from LastDateOfMonth to get the
number of days remaining in the month. (Add 1 to the
last statement to count MyDate as a day.)

Figure 2 shows the results when the date is May 7,
1996. The program works in leap years, too. QA

Tom Marcellus is editor of The Quick Answer and author of PC World Q&A

Bible, published by IDG Books. His QuickClick Calendar Plus—a time- and

activity-tracking database for Q&A 5.0—along with his QuickClick

RecordFinder for Q&A 5.0, are available from Marble Publications,

publisher of The Quick Answer.

Figure 2. A sample record showing the
results of the program’s calculations.

WHILE reading a PC Magazine’s “Solutions”
column the other day, my interest was piqued
by a reader’s programming question: “How

do you reliably determine the number of days in a
month? This is a problem that often stymies people.”
The reader went on to describe his FoxPro/Visual
FoxPro program that performed the feat, then the
column’s editor added some commands to find the first
and last dates of a month. Though I didn’t have an
immediate use for such a program, I wondered what it
would take to do this in Q&A.

Figure 1 shows a sample date calculation database
at the Format Spec. The field names and formatting
codes are self-explanatory. Listing 1 shows the on-exit
program I came up with for the MyDate field.

(Keep in mind that Q&A stores dates in a YYYY/
MM/DD format—1996/05/15 for May 15, 1996, for
example—no matter the display format you select when
you designed or redesign the database.)

The Quick Answer ● June 1996 15

Answer
Quick

TM

The Make Your Macros
Loop the Loop

JEFF NITKA

A processing task can involve so many
variables that you’re loath to entrust it to a
macro. Here’s a nifty “divide and conquer”
technique that loops a macro the exact
number of times necessary to process
each set of variable retrieval parameters.

WHEN you can restrict the variable retrieval
parameters involved in a processing task to one
field, it’s usually no problem automating that

task with a macro. But if the macro must act on variable
retrieval parameters in more than one field, or perform
Mass Updates or other data manipulation operations,
grouping the retrieval parameters can result in erroneous
output or even data corruption.
 I have three clients with processing tasks that fall into
the latter category. Two run a complex multifield Mass
Update on variable invoice line item records before
printing a merge invoice. The other prints merge
documents, each of which needs to include variable text
in more than one field. In these cases, trying to specify all
the retrieval restrictions in one place would be too
complex and an invitation to error.

For these kinds of processing tasks, I came up with a
technique that lets you specify multiple sets of multifield
retrieval parameters at the outset, then run an auto-
looping macro until all them have been processed.

How the technique works
With this technique, you add a record to a database
named LIST.DTF, typing in the retrieval parameters for
the macro to process. You save the first record, then add
another with different parameters. You add as many
records as you have distinct sets of parameters.

You then open a one-field database named GO.DTF
that starts and stops the looping macro routine. GO.DTF’s
program checks LIST.DTF for the highest record number,
then runs the Process Info macro to process it. If no LIST.DTF
record exist, GO.DTF invokes the Stop Processing macro.

The trick is to design the Process Info macro to delete
the LIST.DTF record just used, and pass control back to
GO.DTF, so its program can continue the loop (rerun the
macro) or terminate processing. To do this, the Process Info

macro must perform these steps:

1. Exit GO.DTF, and open the database (or merge
document) to be processed.

2. Call a saved Retrieve Spec (by pressing Alt-F8) that
searches the database you’re processing for the
information that corresponds to the parameters in the
largest LIST.DTF record. (I’ll explain this in more
detail later.)

3. Process the record(s) found, then delete from
LIST.DTF the highest record number—the one just
used in step 2.

4. Escape from LIST.DTF, and reopen GO.DTF in Add
Data mode.

 If there’s another LIST.DTF record to process, GO.DTF
reruns the Process Info macro. If LIST.DTF is empty
(detected by the @Error function), then GO.DTF invokes
the Stop Processing macro that exits GO.DTF and returns
to the Q&A Main menu.

Setting up the databases
Let’s create the two databases (LIST and GO), and run a
demo using a macro that performs a Mass Update on some
records that meet the retrieval parameters in two fields.

LIST.DTF contains three fields. Its first field, Entry, is
formatted for numbers and is Speedy and read-only.
Entry’s program increments each record, like this:

< If @Add and Entry = ""
 Then Entry = @XLR(@Fn,999,"Entry","Entry") + 1;
 Cnext

The Product and Lot Number fields store retrieval
parameters for the Process Info macro to act on. (You can
use the Restrict Spec to place a “not empty” restriction
these fields—it helps ensure accurate data retrieval and
processing.)
 GO.DTF contains a single text field named Question.
Before you program it, though, record the two macros
you’ll need.

Recording the macros
Before recording the Process Info macro, you should create

Second-Class
Postage Paid at

Rockville, MD
PO Box 9034
Gaithersburg, MD 20898-9034

and save any complex Update, Retrieve, or other Specs
the macro will call.

Add a record to GO.DTF, and enter a dummy value
(one character will do) in the Question field. Then, record
the Process Info macro with the following steps:

1. Exit GO.DTF by pressing Esc and answering Yes.
(You’re not saving the record.)

2. Select Mass Update, enter the database path and
filename to process (not LIST.DTF), and press Enter.

3. At the Retrieve Spec, press Alt-F8, and select the
saved Spec that contains the following retrieval
parameters:

Product: = {@XLR("LIST",999,"Entry","Product")}

Lot Number: = {@XLR("LIST",999,"Entry","Lot Number")}

These expressions return the variable retrieval
parameters from the LIST.DTF record with the
highest Entry field number.

4. Press F10 for the Update Spec. Enter your Specs, or
press Alt-F8 to select a saved Spec, then press F10 to
run the update. When the update is finished, have the
macro perform whatever additional steps are
necessary to utilize the updated records, such as
printing a merge document.

5. Select Search/Update for LIST.DTF, and press Enter.

6. Type “MAX” in the Entry field, and press F10.

7. Press F3, answer Yes, and press Enter to delete the
record.

8. Exit LIST.DTF, select Add Data for GO.DTF, and press
Enter.

Press Shift-F2, type “Process Info” as the macro name,
then save it to your default macro file.
 The second macro, Stop Processing, simply exits
GO.DTF and returns to the Q&A Main menu:

<begdef><nokey><name>"Stop<sp>Processing"<vidoff>
<esc>Y<enter><esc><esc><enddef>

Programming GO.DTF
To control the looping process, enter the following
program in GO.DTF’s Question field:

< Question = @XLR("List",999,"Entry","Entry");
 If @Error
 Then @Macro("Stop Processing")
 Else @Macro("Process Info")

Press F10 to save the Program Spec, and you’re done.

Try it out
You can now perform a test run. Add a few records to
LIST.DTF. The first record should always contain “1” in
the Entry field. If it doesn’t, it means that a previous loop
was terminated before LIST.DTF was emptied. In this case,
you’ll have to delete the existing records before you can
begin a new run—unless you want to process them. Enter
your retrieval variables in one record after another until
the list is complete, then press Shift-F10 to save and exit.

Now, open GO.DTF in Add Data mode, and watch
the looping process take off. If you have everything set up
properly, the loop will run until LIST.DTF contains no
more records. Good Luck! QA

Jeff Nitka works for a chemical manufacturer and develops Q&A

applications part-time for Epoch Software, 908-874-3989. Jeff is the

author of the Program Evaluator, a Q&A program debugging utility

available from Marble Publications.

